Agent Productivity Modeling in a Call Center Domain Using Attentive Convolutional Neural Networks

Agent Productivity Modeling in a Call Center Domain Using Attentive Convolutional Neural Networks

Ahmed, A., Toral, S., Shaalan, K., Hifny, Y. (2020).

 

 

ABSTRACT

Measuring the productivity of an agent in a call center domain is a challenging task. Subjective measures are commonly used for evaluation in the current systems. In this paper, we propose an objective framework for modeling agent productivity for real estate call centers based on speech signal processing. The problem is formulated as a binary classification task using deep learning methods. We explore several designs for the classifier based on convolutional neural networks (CNNs), long-short-term memory networks (LSTMs), and an attention layer. The corpus consists of seven hours collected and annotated from three different call centers. The result shows that the speech-based approach can lead to significant improvements (1.57% absolute improvements) over a robust text baseline system.

 

DOI https://doi.org/10.3390/s20195489

The British University in Dubai

Block 11, 1st and 2nd floor, Dubai International Academic City PO Box 345015, Dubai, UAE

Tel: +971 4 279 1400

Whatsapp: +971 50 701 2843

Email: [email protected]